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Abstract
We construct two pairs of quasicoordinates and quasimomenta in a finite phase
plane, which form sets of conjugate variables. In such a plane the coordinate x
is quantized with a step c, and the momentum p with a step 2π

Mc
, where Mc is the

size of the phase plane in the x-direction. The construction depends crucially
on the possibility of writing M = M1M2 with M1 and M2 relatively prime.
The conjugate variables are applied to Harper-like Hamiltonians. It is shown
how to design physical systems with energy spectra containing any desired
number of discrete energy levels, say M1, each of them having a prescribed
degeneracy M2.

PACS numbers: 73.20.Dx, 02.20.Df, 03.65.−w

A general theory of quantum mechanics in a finite phase plane was developed by Schwinger
[1]. It is achieved by applying boundary conditions on the coordinate x for a wavefunction
ψ(x) and on its Fourier transform F(p)

ψ(x + Mc) = ψ(x); F

(
p + h̄

2π

c

)
= F(p), (1)

where M is an integer and c is a constant. As a consequence of these boundary conditions,
the coordinate x and the momentum p are quantized and they assume the following discrete
values:

x = sc, s = 1, . . . , M; p = h̄
2π

Mc
t, t = 1, . . . ,M. (2)

In this framework the operators x and p are replaced by the exponential operators τ
(

2π
Mc

)
and

T (c)

τ

(
2π

Mc

)
= exp

(
ix

2π

Mc

)
, T (c) = exp

( i

h̄
pc

)
. (3)
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From equations (2) and (3), it follows that[
τ

(
2π

Mc

)]M

= [T (c)]M = 1. (4)

Quantum mechanics in a finite phase plane finds applications in a great variety of areas
such as the quantum Hall effect [2], quantum maps [3], Landau levels in a magnetic field, von
Neumann lattices [4] and quantum computing [5]. For a review article see [6].

We now assume that

M = M1M2 (5)

with M1 and M2 relatively prime numbers. This assumption is crucial for what follows.
Following equation (5), we introduce two constants

a = M1c and b = M2c, (6)

and define two kq-representations based on the two complete sets of commuting operators [7]

τ

(
2π

a

)
= eix 2π

a , T (a) = e
i
h̄
pa; τ

(
2π

b

)
= eix 2π

b , T (b) = e
i
h̄
pb. (7)

We have [
τ

(
2π

a

)
, T (a)

]
=

[
τ

(
2π

b

)
, T (b)

]
= 0 (7a)

but

T (a)τ
(

2π
b

) = τ
(

2π
b

)
T (a) exp

(
2π iM1

M2

)
and

T (b)τ
(

2π
a

) = τ
(

2π
a

)
T (b) exp

(
2π iM2

M1

)


 . (7b)

It therefore follows that the operators T (a) and τ
(

2π
a

)
and their powers form a set of M

commuting operators. The same can be said about the operators T (b) and τ
(

2π
b

)
. This means

that the operators in equations (7) together with all their distinct products lead to M2 distinct
operators which replace the M2 operators in equation (3).

Let us now define the eigenvectors and eigenvalues of each of the two commuting sets of
operators in equation (7):

τ

(
2π

a

)
|k, q〉 = eiq 2π

a |k, q〉; T (a)|k, q〉 = eika|k, q〉 (8)

τ

(
2π

b

)
|K,Q〉 = eiQ 2π

b |K,Q〉; T (b)|K,Q〉 = eiKb|K,Q〉 (9)

where |k, q〉 and |K,Q〉 are, respectively, the eigenvectors of the pairs of commuting operators
τ
(

2π
a

)
, T (a) and τ

(
2π
b

)
, T (b) in equation (7). In the x-representation the eigenvectors in

equations (8) and (9) are [4, 7]

〈x|k, q〉 = 1√
M2

M2∑
s=1

exp(iksa)�(x − q − sa), (10)

〈x|K,Q〉 = 1√
M1

M1∑
t=1

exp(iKtb)�(x − Q − tb), (11)
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Table 1. Solutions of equation (16) for M = 10, M1 = 2, M2 = 5 (see text).

s 1 1 2 2 3 3 4 4 5 5
t 1 2 1 2 1 2 1 2 1 2
r 3 8 1 6 9 4 7 2 5 10

where �(x) is 1 when x is a multiple of Mc, and is zero otherwise. In equations (10) and (11)
the variables k, q,K and Q assume the following values:

k = 2π

Mc
f, f = 1, . . . , M2, q = gc, g = 1, . . . , M1 (12)

K = 2π

Mc
f ′, f ′ = 1, . . . ,M1, Q = g′c, g′ = 1, . . . , M2. (13)

With this information at hand we can find the probability of measuring the variables k
and q, when the particle is in the state |K,Q〉. For this we first find 〈k, q|K,Q〉 (we use
equations (10) and (11))

〈k, q|K,Q〉 =
Mc∑
x=c

〈k, q|x〉〈x|K,Q〉

= 1√
M1M2

M2∑
s=1

M1∑
t=1

exp(−iksa + iKtb)�(Q + tb − q − sa). (14)

Because of the �-function, 〈k, q|K,Q〉 in equation (14) does not vanish only when
Q − q + tb − sa = 0, modulo Mc. Let us assume that Q = mc, q = nc. Having in
mind that a = M1c and b = M2c (equation (6)), the equation

Q − q + tb − sa = 0, modulo Mc (15)

becomes

tM2 − sM1 = r, modulo M, (16)

where r = n − m, and M1 and M2 are relatively prime as was pointed out before. It can
be shown that for each value of r between 1 and M there is a single pair (s, t) that solves
equation (16). This means that the Diophantine equation (16) has exactly M different triples
(r, s, t) that solve it with r running from 1 to M, s from 1 to M2 and t from 1 to M1. An
example of such triples is given in table 1 for M = 10,M1 = 2 and M2 = 5.

Let us now come back to equation (14) for 〈k, q|K,Q〉. For any two coordinates q and Q
the �-function in equation (14) will be 1, when equation (15) (or equation (16)) is satisfied,
and zero otherwise. From here it follows that the double sum in equation (14) will reduce to
one term, and we find for 〈k, q|K,Q〉

〈k, q|K,Q〉 = 1√
M1M2

exp(−iksa + iKtb), (17)

where q − Q = rc, and r, s and t satisfy equation (16). This actually means that 〈k, q|K,Q〉
does not depend on q and Q explicitly, and the dependence on k and K is given by just the
phase in equation (17). One has to keep in mind, however, that s and t in the phase in
equation (17) are determined by r in equation (16). From equation (17) it follows that

|〈k, q|K,Q〉|2 = 1

M1M2
= 1

M
. (18)
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Figure 1. (a) Eigenvalues of the a-set operators. (b) Eigenvalues of the b-set operators.

This result shows that when the particle is in the eigenstate |K,Q〉 of the commuting operators
T (b) and τ

(
2π
b

)
(see equation (7)), the probability of measuring k and q does not depend on

k and q. The same can be said about measuring K and Q in the eigenstate |k, q〉. We can
therefore claim that the two sets of commuting operators in equation (7) are conjugate (like
the operators x and p).

A very interesting property of conjugate operators is as follows. We call the commuting
sets of pairs of operators in equation (7) the a and the b-sets, respectively. We can show
that when the a-set operators in equation (7) operate on the eigenvectors of the b-set, the
eigenvalues of these eigenvectors are shifted. Let us first find the eigenvalues of the vectors
T (a)|K,Q〉. We have, using the first equation in equations (7b), and (9)

τ

(
2π

b

)
T (a)|K,Q〉 = ei(Q−a) 2π

b T (a)|K,Q〉, (19)

where a = M1c (see equation (6)). Equation (19) shows that applying T (a) to the eigenvector
|K,Q〉 results in an eigenvector corresponding to the eigenvalue Q−a. Similarly, if we apply
T 2(a) to |K,Q〉 we will get an eigenvector corresponding to Q − 2a, and so on. Applying
all the operators T �(a) with � = 1, . . . ,M2 to |K,Q〉, we will obtain M2 eigenvectors
T �(a)|K,Q〉 corresponding to the eigenvalues Q − �a. This means that starting with a fixed
Q, and � assuming the values � = 1, . . . , M2,Q − �a will assume all possible eigenvalues of
τ
(

2π
b

)
in equation (13) (or equation (19)). This is easy to see because assuming Q = g′c (see

equation (13)), Q − �a = g′c − �M1c. Bearing in mind that M1 and M2 are relatively prime,
the latter equation modulo M will lead to all possible values of Q in equation (13). In a similar
way one can show that applying τm

(
2π
a

)
with m = 1, . . . ,M1, to the eigenvector |K,Q〉, one

obtains all M1 eigenvectors with eigenvalues K = 2π
Mc

f ′, as given in equation (13). Therefore
we reach the following expected result for conjugate operators: when applying the M operators
of the a-set

[
T (a) and τ

(
2π
a

)]
to a fixed eigenvector |K,Q〉 of the b-set

[
T (b) and τ

(
2π
b

)]
,

we obtain all the eigenvectors of the b-set. And vice versa, when applying the M operators of
the b-set to a fixed eigenvector |k, q〉 of the a-set, we restore all the eigenvectors of the a-set.
In figures 1(a) and (b) we plot the eigenvalues of the a-set and the b-set, respectively, for the
example considered above, M = 10,M1 = 2,M2 = 5 (see table 1).

Alternatively, one may say that when all the M = 10 a-set operators are applied to a single
eigenvector of the b-set this will lead to ten different eigenvectors of the b-set, corresponding
to the ten eigenvalues in figure 1(b). And, vice versa, when the M = 10 b-set operators are
applied to a single eigenvector of the a-set, we will obtain the ten different eigenvectors of the
a-set corresponding to the ten eigenvalues in figure 1(a). What is important to stress here is
that all the eigenvalues are included in this process, which is a consequence of the a-set and
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b-set being conjugate. For either of these sets, their eigenvalues lie in a unit cell of area h,
the Planck constant. The covering of all the eigenvalues in the unit cells of the phase plane is
reminiscent of ergodicity in statistical physics.

Having established the conjugacy of the two sets of operators in equation (7), one can
now discuss the wavefunctions C(a)(k, q) and C(b)(K,Q) in the kq and KQ-representations.
We shall use the following notation for the different representations of the state |ψ〉:

ψ(x) = 〈x|ψ〉, F (p) = 〈p|ψ〉,
C(a)(k, q) = 〈k, q|ψ〉, C(b)(K,Q) = 〈K,Q|ψ〉. (20)

For finding relations between the functions in equation (20), it is convenient to employ the
various representations of the unit operator I∑

x

|x〉〈x| =
∑

p

|p〉〈p| =
∑
k,q

|k, q〉〈k, q| =
∑
K,Q

|K,Q〉〈K,Q| = I. (21)

In the finite phase plane (see equation (1)) the Fourier transform F(p) of ψ(x) is

F(p) = 〈p|ψ〉 =
∑

x

〈p|x〉〈x|ψ〉 = 1√
M

∑
x

exp
(
− i

h̄
xp

)
ψ(x), (22)

where x and p are given in equation (2), and the result was used that the eigenstate |p〉 of T (c)

(equation (3)) in the x-representation is [1]

〈x|p〉 = 1√
M

exp
( i

h̄
px

)
. (23)

The absolute value of the square of 〈x|p〉 is a constant, |〈x|p〉|2 = 1
M

. This is a consequence
of the fact that the operators in equation (3), τ

(
2π
Mc

)
and T (c) are conjugate. The relation

between C(a)(k, q) and ψ(x) (see equation (20)) is well known [4]

C(a)(k, q) = 〈k, q|ψ〉 =
∑

x

〈k, q|x〉ψ(x) = 1√
M2

M2∑
s=1

exp(ikas)ψ(q − sa). (24)

It is of interest to find also an equation, similar to equation (22), connecting the functions
C(b)(K,Q) and C(a)(k, q).

We have, by using equation (14)

C(b)(K,Q) =
∑
k,q

〈K,Q|k, q〉〈k, q|ψ〉 = 1√
M

∑
k

M1∑
t=1

exp(−iKtb)C(a)(k,Q + tb). (25)

In deriving equation (25), we used the fact that for each fixed difference q − Q = rc,
the Diophantine equation (16) determines uniquely s and t. Attention should be drawn
to the summation over q in equation (25). As a consequence of this summation, the
function C(a)(k,Q + tb − sa) appears. From the periodicity conditions, it follows that
C(a)(k,Q + tb − sa) = exp(−iksa)C(a)(k,Q + tb). This explains the disappearance of the
factor exp(iksa) from the expression 〈K,Q|k, q〉 of equation (14). Similarly, one finds

C(a)(k, q) = 1√
M

∑
K

M2∑
s=1

exp(−iksa)C(b)(K, q + sa). (26)

Equations (25) and (26) can be looked upon as analogoues of the Fourier transform in
equation (22). As an example of using equation (25), let us consider the case M = 10,

M1 = 2,M2 = 5, and

C(a)(k, q) = 1√
M

, for any k, and 0 < q � M1c. (27)
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2π
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π
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b

h

h

(a) (b)

Figure 2. (a) Plot of
∣∣C(a) (k, q)

∣∣2
in equation (27). All the ten points in the unit cell have intensity

of 1
10 . (b) Plot of

∣∣C(b) (K, Q)
∣∣2

in equations (28), (29). The four open circles in the unit cell have

intensity of 1
4 . The six black circles have intensity zero.

For K = 2π
10c

,Q = c, we have for C(b)
(

2π
10c

, c
)

in equation (25)

C(b)

(
2π

10c
, c

)
= 1

10

5∑
f =1

[
exp

(
−i

2π

10c
5c + i

2π

10c
f 4c

)
+ exp

(
−i

2π

10c
10c + i

2π

10c
f 10c

)]
= 1

2
.

(28)

In obtaining the result in equation (28), we used the fact that C(a)(k, 6c) =
exp(ik4c)C(a)(k, 2c) and C(a)(k, 11c) = exp(ik10c)C(a)(k, c), which follows from using
the periodic boundary conditions on C(a)(k, q). Similarly, we find

C(b)

(
2π

10c
, 2c

)
= C(b)

(
2π

5c
, c

)
= C(b)

(
2π

5c
, 2c

)
= 1

2
, (29)

and zero for all other components of C(b)(K,Q). Since the norm of C(a)(k, q) in
equation (27) is 1, one has to expect that also the norm of C(b)(K,Q) will be 1, which
is confirmed by the results of equations (28) and (29). A graphical description of the results
in equations (27)–(29) is given in figures 2(a) and (b). These figures show that the function
C(a)(k, q), which is delocalized in the kq-representation (equal intensity at all points in the
unit cell), becomes localized in the KQ-representation. This feature is not surprising in view
of the fact that the kq- and KQ-representations are conjugate. One can actually show that for
the C(a)(k, q) function in equation (27), for M1 = 2 and for any large odd M2, the resulting
C(b)(K,Q) is like in figure (2b) with |C(b)(K,Q)|2 = 1

4 at the four open circles, and zero
everywhere else. As was pointed out above, C(a)(k, q) and C(b)(K,Q) can be considered as
Fourier transforms of each other.

An immediate natural application of the conjugate operators developed above is the active
area of Harper-like Hamiltonians [8]. These are Hamiltonians which are periodic both in the
momentum p and coordinate x. As an elementary example we consider a Hamiltonian which
is a function of the operators T (a) and τ

(
2π
b

)
(see equations (7))

H = H

[
T (a), τ

(
2π

b

)]
. (30)

This Hamiltonian is periodic in momentum p with period h̄ 2π
a

, and in coordinate x with period
b, which means that the operators T (b) and τ

(
2π
a

)
commute with H in equation (30). Bearing

in mind that T (b) and τ
(

2π
a

)
do not commute, we can label the eigenstates of H by either
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|ε,K〉 or |ε, q〉 where ε is the eigenvalue of H,K the eigenvalue of T (b) and q of τ
(

2π
a

)
. Let

us choose the labelling |ε,K〉 and write (See equation (9)):

H |ε,K〉 = ε|ε,K〉, T (b)|ε,K〉 = exp(iKb)|ε,K〉. (31)

Since τ
(

2π
a

)
commutes with H, this means that also τ

(
2π
a

)|ε,K〉 is an eigenvector of H with
the same eigenvalue ε. However, as was shown above (see text following equation (19)), when
applying τm

(
2π
a

)
with m = 1, . . . , M1 to the eigenvector of T (b), one obtains M1 eigenvectors

of T (b) with eigenvalues K = 2π
Mc

f ′, as given in equation (13). This proves that the eigenvalue
ε of the Hamiltonian H in equation (31) is M1-fold degenerate.

As a simple example let us consider the Harper-like Hamiltonian

H = V1 cos
(p

h̄
b
)

+ V2 cos

(
x

2π

a

)
, (32)

where V1 and V2 are constants. In the kq-representation (the a-set) the eigenvalue equation
for the Hamiltonian in equation (32) is

V1

2
[C(k, q + b) + C(k, q − b)] + V2 cos

(
2π

a
q

)
C(k, q) = εC(k, q). (33)

From what was said above, this equation has M1 eigenvalues ε, each of them M2-fold
degenerate. It is easy to solve it for our example of M = 10,M1 = 2 and M2 = 5. In this
case we have ten points in the finite phase plane (see figure 1(b)), and respectively we have
to solve ten linear homogeneous equations for the ten unknowns C(k, q). However, because
of the 5-fold degeneracy of each energy level, it is sufficient to solve two equations with two
unknowns, which we choose as follows (See equation (33))

V1

2
[eik12aC(k1, q2) + eik12aC(k1, q2)] + V2 cos

(
2π

a
q1

)
C(k1, q1) = εC(k1, q1)

(34)
V1

2
[eik13aC(k1, q1) + eik13aC(k1, q1)] + V2 cos

(
2π

a
q2

)
C(k1, q2) = εC(k1, q2)

where we used the periodicity conditions of the kq-function C(k, q) [7]

C(k, q) = C

(
k +

2π

a
, q

)
= exp(−ika)C(k, q + a). (35)

The notation in equation (34) is (see equation (12)): k1 = 2π
c

, q1 = c, q2 = 2c; a = 2c,
and we have used the fact that in our example b = 5c. By using these values, equation (34)
becomes

V1 ei 4π
5 C2 − V2C1 = εC1 V1 e−i 4π

5 C1 + V2C2 = εC2, (36)

where C1 ≡ C(k1, q1) and C2 ≡ C(k1, q2) (see equation (12)). Solving equation (36) we find
the eigenvalues ε and the ratio of C1 and C2

ε1,2 = ±
√

V 2
1 + V 2

2 , C
(1,2)
2 = ε1,2 + V2

V1 exp
(
i 4π

5

)C
(1,2)
1 , (37)

where the superscripts in the wavefunction denote the two solutions corresponding to ε1 and
ε2. The other eight solutions of equations (34) will have the same energies ε1,2, while the
wavefunctions will have the same expression as in equation (37), but with the exponents
in the denominator exp

(
i 4π

5 m
)

with m = 2, 3, 4, 5. This corresponds to our general result
that the solutions for each ε are 5-fold degenerate. It is interesting to point out that the
solution in equation (37) also solves equation (33) for M1 = 2 and any large odd M2. The
energies are identical with these in equation (37) while for the wavefunctions we will have
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in the denominator exp
[
i π
M2

(M2 − 1)m
]

with m = 1, 2, . . . , M2. This corresponds to a M2-
degeneracy of each energy level as predicted by symmetry. Similarly, one can show that for
M = 2M2, where M2 is odd (a = 2c, b = M2c), the spectrum of the Harper-like Hamiltonian

H = V1 cos
(p

h̄
a
)

+ V2 cos

(
x

2π

b

)
(38)

will consist of M2 discrete energy levels, each of them being doubly degenerate.
From the symmetry analysis and the explicit examples above, it follows that the

Hamiltonians in equations (32) and (38) can be used in the design of physical systems
with desired energy spectra, both from the point of view of the number of energy levels,
and of their degeneracy. This can be achieved by the appropriate choice of M1 and M2 in
equation (5) . For example, when M = 2 × 3 × 5 = 30, there are three different choices for
M1 and M2, (M1,M2) = (2, 15), (3, 10) and (5, 6). This design of energy spectra might turn
out to be of use in today’s nanotechnology.
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